
AP COMPUTER SCIENCE

JAVA CONCEPTS II: VARIABLES AND DATA TYPES

PAUL L. BAILEY

1. Variables

A variable is a name which exists in the Java code for a piece of data which is
stored in the computer’s memory. Each variable has a kind, which refers how it
was created, and a data type, which refers to what it stores.

1.1. Variable Names.

1.1.1. Rules. Variable names are case sensitive. Variable names may not contain
white space. A variable name may be any valid Java identifier:

• Each identifier must have at least one character.
• The first character must be a letter, and underscore, or a dollar sign. The

first character can not be a digit.
• The rest of the characters (besides the first) can be a letter, a digits, and

underscore, or a dollar sign.
• The variable cannot be a reserved word (for example, class, double, or
if).

1.1.2. Conventions. The convention, however, is to always begin your variable
names with a lowercase letter, not “$” or “_”. Additionally, the dollar sign char-
acter, by convention, is never used at all. You may find some situations where
auto-generated names will contain the dollar sign, but your variable names should
always avoid using it. A similar convention exists for the underscore character; while
it’s technically legal to begin your variable’s name with underscore, this practice is
discouraged.

When choosing a name for your variables, use full words instead of cryptic ab-
breviations. Doing so will make your code easier to read and understand. In many
cases it will also make your code self-documenting; fields named cadence, speed,
and gear, for example, are much more intuitive than abbreviated versions, such as
s, c, and g. Also keep in mind that the name you choose must not be a keyword
or reserved word. If the name you choose consists of only one word, spell that
word in all lowercase letters. If it consists of more than one word, capitalize the
first letter of each subsequent word. The names gearRatio and currentGear are
prime examples of this convention. If your variable stores a constant value, such as
static final int NUM_GEARS = 6, the convention changes slightly, capitalizing
every letter and separating subsequent words with the underscore character. By
convention, the underscore character is never used elsewhere.

Date: August 21, 2017.

1



2

1.2. Variable Kinds. The variable kind indicates how the variable was created,
and where it may be used.

• Static variables are declared inside a class but outside of a method, and
exist at the class level. They do not require an instance of an object to
be used. They are global, in the sense that they can be accessed by any
portion of the program that has access to them. Static variables are also
called class variables.
• Instance variables are declared inside a class but outside of a method, but

exist at the object level. They require an instance of an object to be used;
moreover, each object of the same class has different values for its instance
variables.
• Local variables are declared inside a block of code. They are accessible only

from inside of the code block in which they are declared.
• Parameters are passed into a method as part of the method signature.

Otherwise, they behave like local variables.

2. Data Types

2.1. Java Variable Categories. Java is a strongly typed language, which means
that every variable has a type. There are two categories of types: those which are
embedded in the language itself, and those which are defined by classes. The types
which are embedded in the language are called primitive types. Instances of the
types defined by classes are called objects. Primitive types are not objects in Java.

When a variable of a primitive type is passed to a method as a parameter, the
value is copied, and the method receives a separate copy of the value. Thus the
method cannot change the original value. Thus primitive types are sometimes called
value types.

When a variable of a class type is passed to a method as a parameter, only a
reference to the object is copied; thus the method has the capability of changing
the object, if the object allows itself to be changed. Thus class types are sometimes
called reference types.

2.2. Java Primitive Types. Java supports eight different primitive types, which
are listed here. Only three of these are tested on the AP Computer Science exam-
ination, and those are marked in the table.

Type AP Bit Length Values Description

byte 8 ±1.27× 102 8-bit signed integer
short 16 ±3.28× 105 16-bit signed integer
int

√
32 ±2.14× 109 32-bit signed integer

long 64 ±9.22× 1018 64-bit signed integer
float 32 ±3.40× 1038 32-bit floating point
double

√
64 ±1.80× 10308 64-bit floating point

boolean
√

8 true or false boolean
char 16 characters 16-bit unicode

• Java does not support unsigned integers.
• 32-bit floating point has approximately 6 digits of precision.
• 64-bit floating point has approximately 15 digits of precision.
• The actual storage space consumed by boolean is machine independent.



3

2.3. Java Standard Classes. Arrays in Java are a special type of object, which
are supported within the language itself.

Java comes with a standard library containing hundreds of classes. The nonstatic
library classes required for the AP examination are listed here.

• Object: The base class for every other Java class. Every Java class extends
Object.
• Integer: A wrapper class for the primitive type int.
• Double: A wrapper class for the primitive type double.
• Boolean: A wrapper class for the primitive type boolean.
• String: A string of unicode characters.
• List: A list of objects.
• ArrayList: An extension of List to mimic or otherwise work with arrays.

The Java programming language provides special support for character strings
via the java.lang.String class. Enclosing your character string within double
quotes will automatically create a new String object; for example, String s =

"this is a string";. String objects are immutable, which means that once cre-
ated, their values cannot be changed. The String class is not technically a primitive
data type, but considering the special support given to it by the language, you’ll
probably tend to think of it as such.

2.4. Default Values. It’s not always necessary to assign a value when a field is
declared. Fields that are declared but not initialized will be set to a reasonable
default by the compiler. Generally speaking, this default will be zero or null,
depending on the data type. Relying on such default values, however, is generally
considered bad programming style.

The following chart summarizes the default values for the primitive data types.

Data Type Default Value

byte 0

short 0

int 0

long 0L

float 0.0f

double 0.0d

char \u0000

Object null

boolean false

3. Literals

You may have noticed that the new keyword isn’t used when initializing a variable
of a primitive type. Primitive types are special data types built into the language;
they are not objects created from a class. A literal is the source code representation
of a fixed value; literals are represented directly in your code without requiring
computation. It is possible to assign a literal to a variable of a primitive type.



4

3.1. Integer Literals. An integer literal is of type long if it ends with the letter
L or l; otherwise it is of type int. It is recommended that you use the upper case
letter L because the lower case letter l is hard to distinguish from the digit 1.

Values of the integral types byte, short, int, and long can be created from int
literals. Values of type long that exceed the range of int can be created from long
literals. Integer literals can be expressed in decimal, hexadecimal, or binary:

int decVal = 26; // The number 26, in decimal

int hexVal = 0x1a; // The number 26, in hexadecimal

int binVal = 0b11010; // The number 26, in binary

long lngVal = 123456L; // A long literal

3.2. Floating Point Literals. A floating-point literal is of type float if it ends
with the letter F or f; otherwise its type is double and it can optionally end with
the letter D or d.

The floating point types (float and double) can also be expressed using E or e
(for scientific notation), F or f (32-bit float literal) and D or d (64-bit double literal;
this is the default and by convention is omitted):

double d1 = 123.4; // Double literal

double d2 = 1.234e2; // Scientific notation literal

float f1 = 123.4f; // Floating point literal

Additionally, floating point types support three constants POSITIVE_INFINITY,
NEGATIVE_INFINITY, and NaN (not a number).

3.3. Boolean Literals. The boolean literals are true and false.

3.4. Character and String Literals. Use single quotes for char literals and dou-
ble quotes for String literals. The Java programming language also supports a few
special escape sequences for char and String literals:

Escape Character Name ASCII Value
\b backspace 8
\t tab 9
\n line feed 10
\r carriage return 13
\" double quote 34
\’ single quote 39
\\ backslash 92

3.5. Object Literals. There is a special null literal that can be used as a value
for any reference type. The value null may be assigned to any variable, except
variables of primitive types.

There is also a special kind of literal called a class literal, formed by taking a
type name and appending “.class”; for example, String.class. This refers to the
object (of type Class) that represents the type itself.

Reference: http://docs.oracle.com/javase/tutorial/java/nutsandbolts/
Reference: http://www.cs.umd.edu/~clin/MoreJava/Intro/varident.html

Department of Mathematics, BASIS Scottsdale
E-mail address: paul.bailey@basised.com


